It must be better than watercooling - completely sealed and no moving parts. So does anyone use heatpipe technology in their desktops? i'd love to see pics
![Smile :)](./images/smilies/icon_smile.gif)
but how/why is this different to a heatpipe? How would watercooling be able to utilise a larger heatsink than heatpipes? i don't see why this would be so.Krom wrote:It is a myth that they are more effective or 'better' than watercooling. They are still limited by the surface area of the heatsinks they are attached to and the airflow over the heatsink, just like most water cooling systems they still depend on fans to get the work done. Watercooling is so effective because you can easily attach a extremely large heatsink (radiator) to them and they transport the heat directly outside the case.
Krom wrote:Unlike watercooling using fanless cooling towers, going with a fanless design using only heatpipes is impractical since it would require a equally massive heatsink (passive cooling towers are huge) and would also have to be very near the heat source.
whyKrom wrote:It is hard for a heatpipe design to vent the heat outside the case like a water cooler can.
are those the 4 copper pipes sticking out of each tower? The cooling tower might work better if you put it on it's side, for convection.Vindicator wrote:Here's a pic of what my heatsinks look like when mounted to my dual Xeon board. You can see the pair of heatpipes running the length of the tower. For a size reference, one 80mm fan fits on the side pretty nicely. They work well but aren't capable of cooling my Xeons passively.
are these heatpipes in any of your pics? i'd liek to see themImmortal Lobster wrote:The stock HSF with my opteron utilizes 6 heat pipes, but its still short and squaty, very effective, but I still prefer my Blue Orb II, keeps my OCed opty a stifling 6°C over ambiant, or 33.4°C, not bad for a 700mhz OC
Because in a watercooler the water moves through the tubes driven by a pump and a water cooling system is a loop, heat pipes do not circulate. Other then being called "pipes" water coolers and heatpipes have next to nothing in common. Heatpipes are closed non-looping systems; water coolers are looping systems. By nature the distance a heatpipe can efficiently move the heat from the original heat source is limited.roid wrote:but how/why is this different to a heatpipe? How would watercooling be able to utilise a larger heatsink than heatpipes? i don't see why this would be so.Krom wrote:It is a myth that they are more effective or 'better' than watercooling. They are still limited by the surface area of the heatsinks they are attached to and the airflow over the heatsink, just like most water cooling systems they still depend on fans to get the work done. Watercooling is so effective because you can easily attach a extremely large heatsink (radiator) to them and they transport the heat directly outside the case.
Same reason as up there, heat pipes don't circulate like a water cooler, so it has to stay very close to the heat source. Heat pipes can only transfer heat so far so the heat pipe design can't physically reach outside the case efficiently, and there would be no room inside the case for such a massive heatsink.roid wrote:whyKrom wrote:Unlike watercooling using fanless cooling towers, going with a fanless design using only heatpipes is impractical since it would require a equally massive heatsink (passive cooling towers are huge) and would also have to be very near the heat source.
Again same reason, it can't reach like a water cooler can, my radiator is actually in a different room entirely from my PC, it is impossible to do that with a heatpipe design.roid wrote:whyKrom wrote:It is hard for a heatpipe design to vent the heat outside the case like a water cooler can.
The case is normally mounted upright. Here's a review of those heatsinks. Note that they look a little different than in the picture; mine look like the ones in the review (the pic I posted wasnt mine but has the same hardware).roid wrote:are those the 4 copper pipes sticking out of each tower? The cooling tower might work better if you put it on it's side, for convection.Vindicator wrote:Here's a pic of what my heatsinks look like when mounted to my dual Xeon board. You can see the pair of heatpipes running the length of the tower. For a size reference, one 80mm fan fits on the side pretty nicely. They work well but aren't capable of cooling my Xeons passively.
Where did you get the heatpipes from, where they part of the whole cooling tower package thingy? does it have a brandname so i can look it up online?
roid wrote: are these heatpipes in any of your pics? i'd liek to see them
Heatpipes arn't solid cores of copper. They are hollow pipes filled with a working fluid and a wicking system, they use phase change as their mechanism. They have equivalent thermal conductivity of over 80x solid copper (a few sources have indicated their conductivity as thousands of times that of solid copper, i'm still researching...).Krom wrote:Because in a watercooler the water moves through the tubes driven by a pump and a water cooling system is a loop, heat pipes do not circulate. Other then being called "pipes" water coolers and heatpipes have next to nothing in common. Heatpipes are closed non-looping systems; water coolers are looping systems. By nature the distance a heatpipe can efficiently move the heat from the original heat source is limited.roid wrote:but how/why is this different to a heatpipe? How would watercooling be able to utilise a larger heatsink than heatpipes? i don't see why this would be so.Krom wrote:It is a myth that they are more effective or 'better' than watercooling. They are still limited by the surface area of the heatsinks they are attached to and the airflow over the heatsink, just like most water cooling systems they still depend on fans to get the work done. Watercooling is so effective because you can easily attach a extremely large heatsink (radiator) to them and they transport the heat directly outside the case.
Same reason as up there, heat pipes don't circulate like a water cooler, so it has to stay very close to the heat source. Heat pipes can only transfer heat so far so the heat pipe design can't physically reach outside the case efficiently, and there would be no room inside the case for such a massive heatsink.roid wrote:whyKrom wrote:Unlike watercooling using fanless cooling towers, going with a fanless design using only heatpipes is impractical since it would require a equally massive heatsink (passive cooling towers are huge) and would also have to be very near the heat source.
Krom wrote:Again same reason, it can't reach like a water cooler can, my radiator is actually in a different room entirely from my PC, it is impossible to do that with a heatpipe design.roid wrote:whyKrom wrote:It is hard for a heatpipe design to vent the heat outside the case like a water cooler can.
From what i've been reading they are well suited for such a task, what i'm trying to do is see how mainstream this is. I havn't been able to turn up much, so i'm assuming it's not yet mainstream. (but don't you remember back when watercooling was purely the domain of insane overenthusiasts?)Krom wrote:if making them reach further than inside a PC case was practical someone would have done it by now.
yep, if the heat input is beyond the boiling temperature of the working fluid. But in that situation you've probabaly got bigger problems on your mind as (assuming WATER is the working fluid) your CPU is already over 100C. So the heatpipe stops working after your CPU is already fried, not really much of an issue NE?Krom wrote:if heatpipes get too hot they will stop working
Heh, a LITTLE further? You don't think you're being a tad conservative there? 80x further, minimum!Krom wrote:The greater efficiency allows a heatpipe to reach a little further then solid metal, which is why you see heatpipe heatsinks are larger and cool better then solid metal, but it can't beat flowing water for overcoming distance.
Pumps are not worse in MTBF than a high quallity fan. Even better if you get a HQ pump. A heatpipe isn't the solution to everything, it's just a means to get the heat to another location allowing you to get rid of it in a more efficient manner. You still need active cooling w/ todays high end PCs no matter what. WC isn't overkill at all, it allows you to have a quiter PC, cooler PC or OC the crap out of it, as you like. Plus you don't have to run 100's of CFM through the case, making the setup maintainance friendlier even.roid wrote:IMO watercooling is overkill, even heatpipes are overkill. But compared to the disadvantages of watercooling, heatpipes are a no brainer - a "put it in and forget" solution - especially if i can pull it off with a passive radiator/heatsink. Pumps are a worry for me.
That's a misconception -- the fluid in the pipe transports the heat by being "boiled" on the hot end (phase change one). The vapor then travels to the cold end and condensates (phase change two). The wick sucks up the fluid and transports it back to hot end. The fluid inside the pipe has a lot lower boiling point (like 30-40C) than water. If the whole thing heats up to that boiling point (eg. the fan on the cold end fails) the heat transport breaks up.roid wrote:yep, if the heat input is beyond the boiling temperature of the working fluid. But in that situation you've probabaly got bigger problems on your mind as (assuming WATER is the working fluid) your CPU is already over 100C. So the heatpipe stops working after your CPU is already fried, not really much of an issue NE?Krom wrote:if heatpipes get too hot they will stop working
they use capillary action, various styles of internal wicks.Tricord wrote:I'm not sure about heatpipes, but from what I read in this thread their efficiency depends highly on their orientation and shape. If the condenser is located lower than the heat source (i.e. the pipe runs or bends downward) I can't see how a passive heat transport can be established using the evaporate/condense principles. At any rate, they can never be as effective as a closed looping system with separate flowpaths for hot and cold heat transportation media.
The AMD forums have a section called AMDEdge which allowed users to learn about new technologies and techniques. The AMD forums are located at http://forums.amd.com.roid wrote:but how/why is this different to a heatpipe? How would watercooling be able to utilise a larger heatsink than heatpipes? i don't see why this would be so.Krom wrote:It is a myth that they are more effective or 'better' than watercooling. They are still limited by the surface area of the heatsinks they are attached to and the airflow over the heatsink, just like most water cooling systems they still depend on fans to get the work done. Watercooling is so effective because you can easily attach a extremely large heatsink (radiator) to them and they transport the heat directly outside the case.
Krom wrote:Unlike watercooling using fanless cooling towers, going with a fanless design using only heatpipes is impractical since it would require a equally massive heatsink (passive cooling towers are huge) and would also have to be very near the heat source.
why
whyKrom wrote:It is hard for a heatpipe design to vent the heat outside the case like a water cooler can.
if this is all on some website that'd be cool.
are those the 4 copper pipes sticking out of each tower? The cooling tower might work better if you put it on it's side, for convection.Vindicator wrote:Here's a pic of what my heatsinks look like when mounted to my dual Xeon board. You can see the pair of heatpipes running the length of the tower. For a size reference, one 80mm fan fits on the side pretty nicely. They work well but aren't capable of cooling my Xeons passively.
Where did you get the heatpipes from, where they part of the whole cooling tower package thingy? does it have a brandname so i can look it up online?
are these heatpipes in any of your pics? i'd liek to see themImmortal Lobster wrote:The stock HSF with my opteron utilizes 6 heat pipes, but its still short and squaty, very effective, but I still prefer my Blue Orb II, keeps my OCed opty a stifling 6°C over ambiant, or 33.4°C, not bad for a 700mhz OC